Nematic Correlation Length in Iron-Based Superconductors Probed by Inelastic X-Ray Scattering

A. M. Merritt, F. Weber, J.-P. Castellan, Th. Wolf, D. Ishikawa, A. H. Said, A. Alatas, R. M. Fernandes, A. Q. R. Baron, and <u>D. Reznik</u>

Nematicity is ubiquitous in electronic phases of high-T_c superconductors, particularly in the Fe-based systems. We used inelastic x-ray scattering to extract the temperature dependent nematic correlation length ξ from the anomalous softening of acoustic phonon modes in FeSe, underdoped Ba(Fe_{0.97}Co_{0.03})₂As₂, and optimally doped Ba(Fe_{0.94}Co_{0.06})₂As₂. In all cases, we find that ξ is well described by a power law $(T-T_0)^{-1/2}$ extending over a wide temperature range. Combined with the previously reported Curie-Weiss behavior of the nematic susceptibility, these results point to the mean-field character of the nematic transition, which we attribute to a sizable nematoelastic coupling that is likely detrimental to superconductivity.